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Abstract-The invariant representation of the spin tensor defined as the rotation rate ofa principal
triad for a symmetric and non-degenerate tensor is derived on the basis of the general solution of
a linear tensorial equation. The result can be naturally specified to study the. spin of the stretch
tensors and to investigate the relations between various rotation rate tensors encountered frequently
in modern continuum mechanics. A remarkable formula which relates the generalized stress con­
jugate to the generalized strain in Hill's sense. to Cauchy stress. is obtained in invariant form
through the work conjugate principle. Particularly. a detailed discussion on the time rate of
logarithmic strain and its conjugate stress is made as the principal alles of strain are not filled during
deformation.

l. INTRODUCTION

The method of principal axes developed by Hill (1970, 1(78) is well-known and proved to
be very innuential and prominent in modern continuum mechanics. The essence of Hill's
method is to seck a rcpresentation of tcnsors with respect to the trace axes of deformation.
Hill holds that this mcthod is a sure way to avoid the labyrinthinc complcxity cneountercd
in tensor algcbra. He also provided a reprcsentation of a spin tcnsor, which is given in a
component form with rcspect to a fixed background triad. Furthcrmore, this principal axis
method has found its many important applications in studying and formulating constitutive
relations. one of which could be connectcd with the generalizcd strain measure and the
corrcsponding work conjugate stress. Specifically. an intcresting example in these appli­
cations could be referred to the logarithmic strain and its conjugate stress. Sincc Hencky
first introduced thc logarithmic strains referrcd to as "natural" or "truc" ones. they have
been favoured in metallurgical and material science literaturc. Howcvcr, since then this
strain measure has not yet found its uses in the case when the principal axes of strain are
not fixed. Truesdell and Toupin (1960) havc taken note of this situation and Hill (1970)
also argued the inhercnt advantagcs of using the logarithmic strain mcasurc in ccrtain
constitutive inequalities. This problem has been discussed by Hutchinson and Neale (1980),
Storen and Rice (1975) and others. They all confirmed that the logarithmic strain is useful
in formulating the finite theory of plasticity. However, as pointed out by Storen and Rice,
the strain In U is essentially intractable as strain measure, where U is the right stretch
tensor. After discussing the tensorial Hencky measure of strain and strain rate for finite
deformation, Fitzgerald (1980) subjectively concluded that the use of the logarithmic strain
is only limited to the problems with fixed principal strain axes. On the other hand. using
the logarithmic strain measure. Gurtin and Spear (1983) obtained a relationship between
the logarithmic strain rate and the stretching. Recently. Hoger (1986. 1987) derived an
expression for the time rate of In U. based on which a properly invariant representation for
the corresponding stress conjugate to the logarithmic strain has been derived. From what
is mentioned here, there is still a need to make things more clear in dealing with the
logarithmic strain, its time rate and the associated conjugate stress when the principal axes
of strain are not fixed.
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It should be pointed out that the representation of a spin given in component form by
Hill in his early study might not be convenient for the purpose of theoretical study and it
does not reflect the harmony with tensor analysis as well. Considering this fact. it is necessary
to seek the invariant representation of spin tensors and this is our main aim in the present
paper. As shown in the following section. the approach developed will differ from that
offered by rVlehrabadi and Nemat-Nasser (1987). In our approach. we first establish a
general tensorial equation to determine the spin of a symmetric tensor. and then solve the
equation by an expansion technique in terms of a group of complete and irreducible
generators. The rate of a symmetric tensor is supposed to be divided into two parts. one
represents the contribution due to the rotation of the principal axes. the other called the
rate of a tensor with its principal axes fixed is objective. In this way. the influence of the
rotation of the principal axes on the rate of the tensor can be eliminated. In the third section.
we shall focus on the detailed discussion of the stretch tensor and its spin. using the general
results obtained in the second section. In the fourth section. the general relationship between
the rates of generalized strains and stretch tensor. its time rate as well as the spin. is
established. Particularly. the relation between the logarithmic strain rate and the right
stretch tensor and its spin is given in a compact form. In the fifth section. the problem
regarding work conjugate and conjugate stress is discussed in detail and the general relations
between Cauchy stress and the stress conjugate to the generalized strain are derived in
closed forms.

2. INVARIANT REPRESENTATION or" SPIN

Suppose there is a configuration 1/ in three-dimensional space of which a point is
denoted hy X. Let U he a symmetric ,lOd non-degenerate tensor attached to this point X at
time I. that is. del lJ "" O. at any time I. The spectral decomposition of U can he written in
the form

v == L ;.,N,®N"
1- I

( I )

where p.,},~ U,J arc assumed to be the three distinct eigenvalues of V. {N,},_ 1.2.3 arc the
corresponding eigenvel.:tors. which form a 10l.:al orthonormal triad called the principal triad
of V. This triad rotates against a fixed background one and its spin n" is defined by

3

n" == L N, ® N, or equivalently N, == n/..N,.
I-I

(2)

where N; denotes the time derivative of N, at X fixed. Because of the orthonormality of the
principal triad. n /.is a skew tensor

(3)

where ( )f means the transpose of the tensor in the parentheses.
Hill (1978) found a representation for n /.which is given in component form

and

/.. ;';j
aJ" = )--.. (no sum over i. j and ;., #- ).,)

'j - A.,

where An represents the components of the tensor (] based on the Lagrangian triad,

(4a)

(4b)
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iJ = A...N, @ N,.
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Obviously eqn (4a) is not an absolute representation of U L
• The purpose of the present

paper is mainly to seek various invariant representations of U L and their applications.
First, let us consider the skew tensor (iJv- 1 - V- IU). From eqns (I) and (2), we derive

2UL - VU L V-I - V - I U L V = UV - I - V - I U. (5)

This equation can be considered as a linear tensorial equation for U L if V and U are known.
Since U L is the spin of the principal triad of V, all isotropic tensor functions f(V) should
share the common principal triad. Therefore, replacing V by f(V) in (5) we have

Obviously, we can see that (6) has the same form as (5), therefore, the solution of (6) must
be the same as that of (5). For instance, if we select either f(V) = C = V~ or the deviatoric
tensor V' of V, that is, f(V) = V' = V - 1/3(tr V)I, eqn (6) directly becomes

2nL-cnf,c-I-C-IUf·C = tC-I_C-1t,

2UI.-V'Uf·V'-I-v,-ln'·v' = U'V,-I_V,-IU'.

(7a)

(7b)

An elegant technique to solve a family of linear tensorial equation which are more
general than (5) has been recently presented by Wang and Duan (1989). The key of this
technique is to expand the solution in terms of a group of complete and irreducihle
generators associated with this tcnsorial equation. Based on this method ;Illd considering
the fact that HI. is an isotropic skew tensor function of V and U, we can easily lind the
following three linearly independent generators ofnl.

when V has three distinct eigenvalues. Further, the solution of (5) can be expressed in terms
of these generators,

I

U f
. = L W,Uli) with W, = w,(I,lI, Ill),

,- - I

(9)

where I, II and III are, respectively, the invariants of V, and the scalars w, (i = - I, O. I)
are their functions, which need to be determined. In fact, by substituting (9) into (5) and
making use of the Cayley-Hamilton theorem, we can transform (5) into the following form

[3I1Iw, +(1 2 -11)wo+ Iw_ I)U( "+[ - I IIlw, +(3111 -I I1)wo _lIw_,)UC
O)

+[11 IIIwl +(11 2 - I lIl)wo+ 31I1w_ .lU( -II = IIlUC-II. (10)

Since the three genemtors U li
) are linearly indepcndent, we can easily find from (10) the

solutions for Wi

with
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It can be also expressed in a compact form

.& = 4Hl· +271IIi,.•

( 12)

( 13)

where Ill' and lUI:' are. respectively. the invariants of the deviatoric tensor V', Finally,
from (5). (9) and (II) we find

OL = ~ {(II 2
- 31 UI)(UU- UU)+ III(3I1- F)(uim- 1

- V-IUU)

+1lI(1 3-41 II +9[[()(VU- I - V - IV)}. (14)

This formula is valid when .& :/: O. The condition .& = 0 holds if. and only if. V owns
multiple eigenvalues. The proof is as follows.

Obviously we have

Through some algebraic operation we obtain

( 16)

When U IH1S two multiple eigenvalucs. OU) (i = - I. O. I) arc not oflincar independence.
In the case A. = A., = A2 :/: AJ• using thc minimal polynomial of U

(17)

one can show that there is only one independent genemtor of the spin 0 /,. say O( I), then
from (5) and (17) we obtain

(18)

equivalently.

(19)

{}/. can be also obtuincd from (14) through a limit process as .& tends to zero. The limit
result depends on the process and might differ from (18) by a term a(N I ® N 2 - N 2 ® N I)'

However. this term is not essential to nl..
If V has three multiple dgenvalut.'S. it is a spherical tensor and any orthonormal triad

can be tuken as the principal one. In this case. {}f.. could be any skew tensor. This result
can be derived from (14) by assuming a limit process ;'1 -+ "'2 .... )'3 = i.. In brief, (14) can
be applied for arbitrary distribution of eigenvalues of V.

We should mention that the selection of the thrce independent generators as given in
(8) is by no mcans unique. For example. instead of (8), onc can choose

as the independent generators ofn/.. By making use of Cayley-Hamilton theorem.

(21)

cqn (14) can be easily changed into the form
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aL = ~ [W - 5I~ II +6 [m +41[~)(UiJ- iJL') + (41 II -1 3-91I1)(U~iJ - iJu~)

+ (I~ - 31[)(U~iJU - uiJu~)]. (22)

Substituting V and I. II as well as [([ by V' and its corresponding invariants Iv' = O.
Ill' and [([l' the above formula (22) is completely equivalent to that obtained by
Mehrabadi and Nemat-Nasser (1987).

3. STRETCH TENSORS AND THEIR SPINS

Let X denote the position of a moving material particle P at a reference (Lagrangian)
configuration. the motion of the material particle can be described by x = x(X. t) where x
represents the position of P at time t in Eulerian configuration. The deformation gradient
F is defined by

dx = F(X. t) dX. (23)

F is not degenerated and m = del F > O. According to the polar decomposition theorem.
we have

F = RV = YR. (24)

where R. V and V are the rotation tensor. right and left stretch tensors. respectively. For
later cOl1venience, we introduce a local rotation transformation as

R: S--S = RSRT (25a)

which maps any sewnd rank tensor S given in the reference configuration into the current
wnliguratiol1. Therefore. the inverse transformation R I maps a tensor n given in the
current configuration into the reference l'onliguration

R I: n __ D= RTDR. (25b)

So in the following study we shall focus our attention on the problem in the reference
configuration. the results can be readily transferred to the currcnt configuration through
the transformation R.

According to Hill, a family of strain tensors is defined by

3

E = f(V):= L f(A.,)N, ® N,.
, ... 1

(26)

where E called the generalized strain tensor is an isotropic tcnsorial function of V, and the
corresponding scabr function / = f(J.) is smooth. monotonic and satisfies the following
conditions

/(1)=0. /,(1)=1.

This family of strain measure includes the Seth strain

(27)

(28)

As n takes the value n = I. - I. !. (28) gives, respectively. the Green strain. the Almansi
strain and the stretch strain measures. Particularly. when n -- O. (28) corrcsponds to the
logarithmic strain
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['01 = In V, (29)

this is sometime called the generalized Hencky strain.
Let v = x(X, t) denote the velocity of the material point P at time t, the velocity gradient

tensor L is defined by

dv = L dx and L = FF - I, (30a,b)

where ( ') means the time derivative with respect to t at X fixed. Vsually Lcan be additively
decomposed into two parts

with

L=D+W (31 )

(32)

where the symmetric part D and the skew part Ware, respectively, called the stretching
and the material rotation rate tensor. Combining (24) and (30b) with (31)-(32) we obtain

with

L=nR+RUV IRT ,

I) = !R(UV-I+V·'U)RT = ROR r ,

W = n R+ !R(UV' I - V· I U)RT
, (33)

(34a,b)

representing the relative rotation rate and the stretching in the relcrence configuration. If
N, and n, (i = 1,2,3) :Ire the eigenvel:tors of U and V, respectively, then the spins nt

. of U
and nt·: of V :Ire defined by

or equivalently

(35)

3

nl. = " N IC\ NL ,\C)I "
I-I

J

nf.' ".~,' = L. ", ® ", .
,-I

(36)

Based on the previous discussion, the relationship between nt., U and U is completely the
same as eqn (5), of which the solution is given by (14). Since V = FRT = RURT

, we can
prove ", = RN" thus

(37a,b)

From (5) and (33), it is found that

(38a)

then, using (37) and the above formula, we obtain

(38b)

In what follows. we would like to express U as a function of 0 and U. This can be
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done by solving the linear tensorial equation (37b). Since iI is symmetric and linear with
respect to D. there are only six generators for iI. that is D. uim. U!DU 2

• UD+ DU.
U!i) + DU! as well as U2DU + UDU!. As U has three distinct eigenvalues. these generators
are obviously complete and irreducible. Therefore. by a similar procedure to that which we
followed to deal with eqn (5) and taking iJ as the linear combination of the above listed
generators. we obtain from eqn (34b)

(r = III ~ III [111I0+ W+ II)UDU + U!OU! -III(UD+ i)U)-I(U!i)U + UDU 2
)].

(39)

This expression presents the same result as given by Mehrabadi and Nemat-Nasser (1987)
with the exception of a misprint there.

Since V = RURT
• we can easily prove

(40)

where VO can be called the relative time derivative of V. and it is objective. Substituting
(42) into (43). it can be shown that

I
VO = iIT=Tlf [I (110 + (I! + ([)VOV + V20V 2- IH(VD + VU) -I(V 2DV + VDV 2)].

(41 )

Similarly. a repn:sentation for n l in terms of U ,lOd 0 can be directly found through (22)
and (31). and it takes the form

where

(42b)

From (37) and (42a.b). fiE can be expressed by

These two representations (42a.b) and (43) have not been obtained before.
As described by Gurtin and Spear (1983). the co-rotational derivative of U. that is. the

time derivative of U with respect to its principal triad fixed can be defined as

J

U· = (r -n/·u +un/. = L J.,N; ® N,.
i-I

(44)

Similarly. the co-rotational derivatives for an isotropic tensorial functionf(U) is given by

(45)

These co-rotational derivatives defined in (44) and (45) are objective in the sense that
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the influences due to the rotation of the principal axis on U or onf(U) have been eliminated.
If we rewrite (44) in the form

,
U = j(tr U)I+ L A;N, ® N.+nLU-unL,

;= I

(46)

where i.; = )..-1;3(i., +i.z+i.,). It is seen that (J can be additively decomposed into three
parts. the first two parts representing. respectively. the change rate oftr U and the deviatoric
change rate of U watched by an observor fixed on the principal triad. This decomposition
might be useful in constructing the constitutive relations for rate-dependent and hypoelastic
materials,

Finally, it should be mentioned that the above discussion can remain the same for the
symmetric left stretch tensor V given in current configuration. In fact, the spin of V is !lE,
therefore. its co-rotational derivative v* is defined as

(47)

we see from (47) that the co-rotational derivative of V is in general not the same as the
relative time derivative of it.

4. RATES OF GENERALIZED STRAINS

The material derivative of a generalized strain tensor F. defined in (29) can be directly
calculated hy

i·; = L A•.t/()..)N, ® N,+!lt·E_Hlt .
,-1

(48)

where gO.) = dl/di. and.t/( I) = l. Using (44) and the dclinition ofg(U), the above formula
can he transferred into its absolute representation

E = ~[CJ(U)U+(;g(U)I- Hg(UHnt·U-Unt·)+(nt.u-U!lt·)g(U)J+!lt'E-ffit,.
(49)

Therefore. it leads to

for the rate of Seth strain. For 11 = 0, by carrying out a limit process on (50), or from (49),
it is easy to obtain

(51)

It would be sometimes convenient to express the quantity 1/2(Un l U - I - U - 'nt.U) in
terms of i> and U through the fundamental solution (22). To do this we find

Hun/u" -U- 'nt·U) = ~ [doD+q_2U" DU· 1 + ~q .I(DU·' + U-' D)

+ !qo(UDU" + U-1DU)+ ~q,(UD+DU)+q2UDU), (52)

where
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do = -(I J III-7IHIII+9I1I z+IP).

q_1 = (I Z II-3IIII-2H z)lII.

ql = IH z-2flII-3HIII.

q-z = III z(3H-I z).

qo = III(9 III-I H).

qz=311I1-1I=.

After a simple algebraic calculation we can also arrive at

(53)

Combining (52) with (53). the co-rotational derivative (In U)* is expressed by 0 and U.
which is useful in determining the conjugate stress of the generalized Hencky strain.

We insert eqn (53) into (48) and arrive at

t =g(U)U(ln U)*+!1L E-EnL = ![g(U)U(ln U)*+(ln U)*Ug(U)]+!1 L E-E!1L
•

(54)

which leads to the following expression

tin} = HU~n(ln U)*+(ln u)*UZn]+ i-(!1l.uzn_u~n!1l.).
_1/

for the Seth strain [Inl. In particular. we obtain

(55)

(56)

In what follows. we want to seek the expressions for the relative time derivative and
the co-rotational derivative of In V. To do this. we first make use off(V) = Rf(U)R '". and
have

df(V) df(U) r R . • R---- = R--- - R +!l j(V)-j(V)!1 .
dt dt

Combining (57) with equations (51) Hnd (47). finally we arrive Ht

(57)

where iF = R!1l.R T HS defined in (37b). The result shown in (59) is the SHme in form as
obtained by Gurtin Hnd Spear (1983). where they did not give an explicit representation for
fi,=!l".

5. WORK CONJUGATE AND CONJUGATE STRESSES

According to Hill (1978). the stress T conjugate to the generalized strain E can be
defined through

w = III tr (O'D) = tr (TE), (60)

where w represents the stress power worked on a volume element in reference configuration
and (1 the Cauchy stress. In fact, the symmetric tensor Tin (60) can be determined uniquely
as the form of E is prescribed.

Before deriving the general relation between T and 0'. Consider. as an example. the
simple case E = E(I/Z) = U -I. From (60). we obtain
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(61 )

This result can be found in Hill (1978). Conversely a can be expressed in T( I ~I. In fact.
from (39) and (60) it follows that

a = I RrIIllTllz'+(I~+Il)VTII ~IV+V~T'I ~)V~-III(T('~)V+VT(I(~»
111(111-111) I

-[(UT' 1 :)U~ + VT f l/2IU)}RT • (62)

The general relations between 'I' and a are not as simple as (61) and (62).
Because we already have an explicit representation of (In U)'" and E. the representation

of the stress 'I' conjugate to E can be derived without any difficulty. from (54) and (60). it
follows that

III tr(a' D) = III tr (0-' D) = tr [Tg(V)V(ln V)'" + (ET - TE){lL]. (63)

where ET - ET is measure-invariant (Hill. 1975. unpublished). Since (In V)'" is measurc­
invariant. the diagonal components of Tg(V) in Lagrangian triad and tr (T,q(V». tr
(T.q(V)V) as well as tr (T.LJ(V)V z) are measure-invariant. too. Combining (42b). (54) and
(63). the expression for (J by virtue ofT can be obtained. For convenience we introduce the
following notation.

then we arrive at

III RTaR = Sym {Tq + ±PIa:}.
1- I

or

where P, can be found in (42b) and

a~,=THV '-V-ITt:.

a& = VT to· V I - V 'Tt:V.

ai = VTE-Tt,·V.

(64)

(65a)

(65b)

where Sym {.} means the symmetric part of {. }. When the specific form of E is given in
terms of V. the above representation (65a) with (65b) can be simplified further. To show
this. let's consider the case 'I' = TID). from (64)-(65) we have

then
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(66)

The representation ofT with respect to a or acan be derived from (73) through lengthy
algebraic calculation.

To avoid this complexity. an alternative way can be taken for eqn (6) by applying the
general approach as described in detail by Wang and Duan (1989). based on which the
solution of (6) can be expressed by

where

I

n L = L w{n{.
i= - I

(67)

with

6.r = 41/lIIr -lllI} - 181r II, 111,+411/ +27 III} •

where I,. IIr and IlIr arc the three invariants of E. We make use of eqns (53) and (54) to
express f) in terms of E. t. U as well as n/.in the form

(69)

Then eqn (60) can be rewritten as follows:

tr (T' E) = III tr (a' D) = If[ tr (a' 0)

= III tr {a[(g(U)U)-'(E-nLE+EnL) - !(unLu- 1- U-lnLU)]). (70)

where,j = RTaR and 0 = RTDR. Now utilizing (67), inserting it into (70) and through a
cumbersome algebraic calculation we finally find the solution of (70) as given by

where

T = III Sym {a[g(u)U] - I + ;_~ I w{1:{} , (71)

with

As an important example of the applications of (74), let us calculate the stress T(OI
conjugate to the logarithmic strain ElOl = In U. Since f(),) = In )., so )!'().) = gel»), = I,
which means g(U)U = I. In this case, eqns (71)-(73) lead to the simpler form
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~~ I = ~'n (In U) - , - (In U) - I!:In,

!:~ = (In U)!:ln(ln U) - I - (In U)- I ~In (In U).

!:'t = (In U)~ln - ~'n(ln U)

~In = a In U -In Ua+ !(UaU- 1
- U-'aU).

(7~)

(75)

(76)

This result can be compared with Hoger (1987).
With the help of (74). we can easily find the stress f'O) conjugate to the strain In V.

Before deriving this stress, it is worth pointing out that since (In V)' is not objective. an
objective time derivative, say (In V)'. has to replace (In V)' in using the formula (60), that
is. we must have

III tr (aD) = tr (T(Il}(ln un; tr (aO) = tr ctlll)(ln V) '),

Since (In U)' = R r (In V)'R. from (85) we immediately arrive at

(77)

(78)

Therefore, the conjugate stress t(O) of In V is just '1"'(1)/111, the mapping of the conjugate
stress T(O) of In U in the current configuration by using the transformation R as ddineo in
(25), oivioeo by III. The same conclusion can be orawn for the relation between the stress
conjugate to/(U) ano that for f(V).

Hoger (1987) discussed the conjugate stress of In V and concluoed that the stress
generally docs not exist. However she seems to ignore the fact that the generalizeo strain E
and its conjugate stress T are defined in the reference configuration. If usc is made: of the
work conjugate principle to define the conjugate stresses in the current configuration, an
objective time derivative of strain should be defined to replace the: simple time de:rivative
of the strain. The above discussion concerning the conjugate stress for In V obviously
confirms our argument.

6. CONCLUDING REMARKS

Making usc of a group of complete and irreducible generators of a linear tensorial
equation. the solution of this equation is obtained by an expansion technique. In particular.
the tensorial equation for a spin fit. of the principal triad ofa symmetric and non-degenerate
tensor U has been formulated and discussed in detail. Based on this novel technique. the
invariant representation of the spin in terms of U and (; has been given in a closed form.
and it has a simpler form as the tcnsor U has multiple eigenvalues.

To show the applications of the proposed mcthod. three specific problems which are
obviously very fundamental in the study of constitutive relations for finite deformations
have been successfully treated. including the stretch tensor and its spin. the invariant
representations of generalized strain rate. Above all, the general invariant representation
of the stress and the generalized strain. which, to the best of the authors' knowledge. has
not been known before. As an important example of the applications. the logarithmic
strain and its conjugate stress given either in the reference configuration or in the current
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configuration have been discussed in some detail and their invariant representations have
been analyticalIy formulated in a compact form.
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