Int. J. Solids Structures Vol. 27, No. 3, pp. 329-341. 1991 0020-7683/91 $3.00+ .00
Printed 10 Great Boitan. C 1990 Pergamon Press plc

ON THE INVARIANT REPRESENTATION OF SPIN
TENSORS WITH APPLICATIONS

WEN-B1a0 WANG
Division of Physics. Graduate School. USTC. Beijing 100039, China

and

ZHU-PING DuaN
Laboratory for Non-Linear Mechanics of Continuous Media, [nstitute of Mechanics,
Academia Sinica, Beijing 100080, China

(Received 25 July 1989 ; in revised form 13 December 1989)

Abstract—The invariant representation of the spin tensor defined as the rotation rate of a principal
triad for a symmetric and non-degenerate tensor is derived on the basis of the general solution of
a linear tensorial equation. The result can be naturally specified to study the spin of the stretch
tensors and to investigate the relations between various rotation rate tensors encountered frequently
in modern continuum mechanics. A remarkable formula which relates the generalized stress con-
jugate to the generalized strain in Hill's sense, to Cauchy stress, is obtained in invariant form
through the work conjugate principle. Particularly, a detailed discussion on the time rate of
logarithmic strain and its conjugate stress is made as the principal axes of strain are not fixed during
deformation.

L. INTRODUCTION

The method of principal axes developed by Hill (1970, 1978) is well-known and proved to
be very influential and prominent in modern continuum mechanics. The essence of Hill's
method is to seck a representation of tensors with respect Lo the trace axes of deformation.
Hill holds that this method is a sure way to avoid the labyrinthine complexity encountered
in tensor algebra. He also provided a representation of a spin tensor, which is given in a
component form with respect to a fixed background triad. Furthermore, this principal axis
method has found its many important applications in studying and formulating constitutive
relations, one of which could be connected with the generalized strain measure and the
corresponding work conjugate stress. Specifically, an interesting example in these appli-
cations could be referred to the logarithmic strain and its conjugate stress. Since Hencky
first introduced the logarithmic strains referred to as “natural” or ““true™ ones, they have
been favoured in metallurgical and material science literature. However, since then this
strain measure has not yet found its uses in the case when the principal axes of strain are
not fixed. Truesdell and Toupin (1960) have taken note of this situation and Hill (1970)
also argued the inherent advantages of using the logarithmic strain measure in certain
constitutive inequalities. This problem has been discussed by Hutchinson and Neale (1980),
Stéren and Rice (1975) and others. They all confirmed that the logarithmic strain is useful
in formulating the finite theory of plasticity. Howcver, as pointed out by Stdren and Rice,
the strain In U is essentially intractable as strain measure, where U is the right stretch
tensor. After discussing the tensorial Hencky measure of strain and strain rate for finite
deformation, Fitzgerald (1980) subjectively concluded that the use of the logarithmic strain
is only limited to the problems with fixed principal strain axcs. On the other hand, using
the logarithmic strain measure, Gurtin and Spear (1983) obtained a relationship between
the logarithmic strain rate and the stretching. Recently, Hoger (1986, 1987) derived an
expression for the time rate of In U, based on which a properly invariant representation for
the corresponding stress conjugate to the logarithmic strain has been derived. From what
is mentioned here, there is still a need to make things more clear in dealing with the
logarithmic strain, its time rate and the associated conjugate stress when the principal axes
of strain are not fixed.
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It should be pointed out that the representation of a spin given in component form by
Hill in his early study might not be convenient for the purpose of theoretical study and it
does not reflect the harmony with tensor analysis as well. Considering this fact. it is necessary
to seck the invariant representation of spin tensors and this is our main aim in the present
paper. As shown in the following section, the approach developed wili differ from that
offered by Mehrabadi and Nemat-Nasser (1987). In our approach, we first establish a
general tensorial equation to determine the spin of a symmetric tensor, and then solve the
equation by an expansion technique in terms of a group of complete and irreducible
generators. The rate of a symmetric tensor is supposed to be divided into two parts. one
represents the contribution due to the rotation of the principal axes. the other called the
rate of a tensor with its principal axes fixed is objective. In this way. the influence of the
rotation of the principal axes on the rate of the tensor can be eliminated. [n the third section,
we shall focus on the detailed discussion of the stretch tensor and its spin. using the general
results obtained in the second section. In the fourth section. the general relationship between
the rates of generalized strains and stretch tensor, its time rate as well as the spin, is
established. Particularly. the relation between the logarithmic strain rate and the right
stretch tensor and its spin is given in a compact form. In the fifth section. the problem
regarding work conjugate and conjugate stress is discussed in detail and the general relations
between Cauchy stress and the stress conjugate to the generalized strain are derived in
closed forms.

2. INVARIANT REPRESENTATION OF A SPIN

Supposc there s a configuration B in three-dimensional space of which a point is
denoted by X. Let U be a symmetric and non-degenerate tensor attached to this point X at
time ¢, that s, det U # 0, at any time ¢, The spectral decomposition of U can be written in
the form

U=3Y AN, ®N, )]

=1

where {4,},. ., are assumed to be the three distinet eigenvalues of U, {N,},. ., arc the
corresponding eigenvectors, which form a local orthonormal triad called the principal triad
of U. This triad rotates against a fixed background one and its spin Q" is defined by

3}
Q=Y N ®N, orequivalently N, =Q"-N,, (2)

1=1

where N, denotes the time derivative of N, at X fixed. Because of the orthonormality of the
principal triad, Q" is a skew tensor

Q= - (@), 3)

where ()" means the transpose of the tensor in the parentheses.
Hill (1978) found a representation for Q” which is given in component form

Q" = wiN,® N, (4a)

and

w, (nosumover i, jand 4, # 1) (4b)

',—;“/1‘

where A, represents the components of the tensor U based on the Lagrangian triad,
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U = A..,,N, ® NJ'

Obviously eqn (4a) is not an absolute representation of ‘. The purpose of the present
paper is mainly to seek various invariant representations of £2° and their applications.
First, let us consider the skew tensor (UU~'=U~'U). From eqns (1) and (2). we derive

0L —utu-'—u-'QtU=U0Uu ' -U 'L (5

This equation can be considered as a linear tensorial equation for Q¢ if U and U are known.
Since Q" is the spin of the principal triad of U, all isotropic tensor functions f(U) should
share the common principal triad. Therefore. replacing U by f(U) in (5) we have

2QL —f(U)QH ' (U) -~ ' (U)QLU) = FU)E~ ' (U)— £~ ' (D). (6)

Obviously, we can see that (6) has the same form as (5), therefore, the solution of (6) must
be the same as that of (5). For instance, if we select either f(U) = C = U* or the deviatoric
tensor U’ of U, that is, f(U) = U’ = U—1/3(tr U)L. eqn (6) directly becomes

2L -CQC'-C'Q'C=CC'-C'C, (Ta)

20 -UQU U QU = UU T U U (7b)

An clegant technique to solve a family of lincar tensorial equation which arc more
general than (5) has been recently presented by Wang and Duan (1989). The key of this
technique is to expand the solution in terms of a group of complete and irreducible
generators assoctated with this tensorial equation. Based on this method and considering

the fact that " is an isotropic skew tensor function of U and U, we can casily find the
following three lincarly independent generators of Q°

QY =yU-0u, Q"=U0U'-U"'UU, Q' "=0U'-U""'U, (8)

when U has three distinet eigenvalues. Further, the solution of (5) can be expressed in terms
of these generators,
1

Q' =Y 0QY withw, =, IL111), )

1= — |
where [, Il and I are, respectively, the invariants of U, and the scalars o, (i = —1,0,1)

are their functions, which need to be determined. In fact, by substituting (9) into (5) and
making use of the Cayley-Hamilton theorem, we can transform (5) into the following form

Billew, + (1 = Nwe + lw_ JQV+[= e, + G =1 Dw, - Hw_,]Q°
+[H M, + (112 =1 Do+ 3w _ Q" = HQCY. (10)

Since the three gencrators Q" are lincarly independent, we can easily find from (10) the
solutions for w;

Il , Tl
w, = %(H—Nlll). Wy = —A—(3ll—l‘). w_, = —A—(I"—4l IT+91) (y

with
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A =40 - I = 18T I +411° + 27010°. (12)
It can be also expressed in a compact form
A =413+ 27THIE . (13)

where I, and Il are, respectively, the invariants of the deviatoric tensor U’. Finally,
from (5). (9) and (11) we find

Qf = {1 =31 UU - 0U)+ HIGH~-)UUU-'-U-'0U)

i
At

+ UL —4LI+9M)UU-' U ')} (14)
This formula is valid when A # 0. The condition A = 0 holds if, and only if, U owns

multiple cigenvalues. The proof is as follows.
Obviously we have

[y = A1 4+A0+41 =0, Iy = —(AA+A0 4437, My = =254 +43). (19)
Through some algebraic eperation we obtain
A = ~[(A1 =2 (A~ DA = ADP (16)

When U has two multiple cigenvalues, Q7 (i = — 1,0, ) are not of linear independence.
Inthecase 4 = 4, = 4, # 4,, using the minimal polynomial of U

Ul—(A+4)U+il 1 =0, (17)

one can show that there is only one independent generator of the spin £2%, say Q4P then
from (5) and (17) we obtain

AA
Lo . n3 L H
Q= (l—ﬁ ) (UU U~ {i8)
equivalently,
Qg' = &3®N3”N3®§}, {ig}

0 can be also obtained from (14) through a limit process as A tends to zero. The limit
result depends on the process uand might differ from (18) by a term a(N, ® N,~N, ® N)).
However, this term is not essential to Q"

If U has three multiple eigenvalues, it is a spherical tensor and any orthonormal triad
can be taken as the principal onc. In this case, Q* could be any skew tensor. This result
can be derived from (14) by assuming a limit process 4, — A, — A, = A. In brief, (14) can
be applied for arbitrary distribution of cigenvalues of U.

We should mention that the selection of the three independent gencrators as given in
(8) is by no means unique. For example, instcad of (8), one can choose

QY =uU-0Uu, QP =U0U-UU} Q=UUU-UlUY? (20)
as the independent gencrators of Q. By making use of Cayley~Hamilton theorem,
U™ ='W —=1U+ 1D, @2

eqn {14) can be easily changed into the form
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l . . .. A s

Qf = Z[(l‘—SI' H+61HMI+41F)(LU-UV)+ @ TH-DP-9IH(UU-UU?Y)
+(F=3I)UrUUu-Ulu?)). (22

Substituting U and [. IT as well as [1I by U’ and its corresponding invariants [ = 0,
[Iy- and IlI; . the above formula (22) is completely equivalent to that obtained by
Mehrabadi and Nemat-Nasser (1987).

3. STRETCH TENSORS AND THEIR SPINS

Let X denote the position of a moving material particle P at a reference (Lagrangian)
configuration, the motion of the material particle can be described by x = x(X, ) where x
represents the position of P at time ¢ in Eulerian configuration. The deformation gradient
F is defined by

dx = F(X.0) dX. (23)

F is not degenerated and I = det F > 0. According to the polar decomposition theorem,
we have

F = RU = VR, (24)

where R, U and V are the rotation tensor, right and left stretch tensors, respectively. For
later convenience, we introduce a local rotation transformation as

R: S-S =RSR' (25a)
which mups any sccond rank tensor S given in the reference configuration into the current
configuration. Therefore, the inverse transformation R ' maps a tensor D given in the
current configuration into the reference configuration

R': D—-D=R'DR (25b)

So in the following study we shall focus our attention on the problem in the reference
configuration, the results can be readily transferred to the current configuration through
the transformation R.

According to Hill, a family of strain tensors is defined by

3
E=/(U):=Y f(AIN,®N,, (26)

[

where E called the generalized strain tensor is an isotropic tensorial function of U, and the
corresponding scalar function /= f(4) is smooth, monotonic and satisfies the following
conditions

S(y=0, f/(H=1 (27)

This family of strain measure includes the Scth strain
E" = -l»[Uz"— 1]. (28)
2n

As n takes the value n = 1, — 1. L, (28) gives, respectively, the Green strain, the Almansi
strain and the stretch strain measures. Particularly, when n — 0, (28) corresponds to the
logarithmic strain
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E”=InU, 29)
this is sometime called the generalized Hencky strain.
Let v = x(X, r) denote the velocity of the matenal point P at time ¢, the velocity gradient
tensor L is defined by
dv=Ldx and L=FF', (30a.b)

where ( ) means the time derivative with respect to r at X fixed. Usually L can be additively
decomposed into two parts

L=D+W 3
with
D=4{L+L"). W=L{L-L"). (32)

where the symmetric part D and the skew part W are, respectively, called the stretching
and the material rotation rate tensor. Combining (24) and (30b) with (31)-(32) we obtain

L =Qf+RUU 'R",
D= RWUU '+U-'"U)R" = RDR",
W= 0fF 4+ IR(UU '~U""'U)R", (33)
with
Qf=RR" and D=}UU '+U 'U) (34a,b)
representing the relative rotation rate and the stretching in the reference configuration., If
N, and n, (i = 1,2, 3) are the eigenvectors of U and V, respectively, then the spins Q7 of U
and Q% of V are defined by
N, =Q"N,, i =Qn, (35)

or cquivalently
L 3
Q"=YN®N, Q=Y n®n,. (36)
i= =1

Based on the previous discussion, the relationship between %, U and U is completely the
same as eqn (5), of which the solution is given by (14). Since V = FR" = RUR", we can
prove m, = RN,, thus
QF = Q1+ 0" and Qf = RQ'R". (37a.b)
From (5) and (33), it is found that

W =Qf+R[Q - {(UQ'U '+U 'Q"U)RT, (38a)

then, using (37) and the above formula, we obtain
W =QF }[VQ*V- '+ V- IQLY] {38b)

In what follows, we would like to express U as a function of D and U. This can be
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done by solving the linear tensorial equation (37b). Since Uis symmetric and linear with
respect to D. there are only six _generators for U, that is D, UDU, U*DU?, UD+DU,
U’D+DU? as well as U*DU + UDU?®. As U has three distinct eigenvalues, these generators
are obviously complete and irreducible. Therefore, by a similar procedure to that which we
followed to deal with eqn (5) and taking U as the linear combination of the above listed
generators, we obtain from egn (34b)

. l
U= T —[THID+ (I’ + IDUDU+ U*DU? - LII(UD + DU) - [(U*DU + UDU?)].
(39)
This expression presents the same result as given by Mehrabadi and Nemat-Nasser (1987)

with the exception of a misprint there.
Since V = RURT, we can easily prove

VO .= V_QfV4+VQFR = RURT, (40)

where VO can be called the relative time derivative of V. and it is objective. Substituting
(42) into (43), it can be shown that

l
VO = g T HID+(F+ DYDY + VDV~ [TI(VD + VU) ~ [(VDV + VDV 7))
41)

Similarly, a representation for £ in terms of U and D can be directly found through (22)
and (39), and it takes the form

Q" =p,(UD=DU)4p,(UDU '—U "'DU)+p (DU '=U"'D), (42a)

where

2
Py = A(l”_“[)(l U= 4TI +6 T+ 11%),

—211
Po = A TI=T1)
21112

——(1*=41 I 2_
Pov = giirioip 4P 6T+ (42b)

(T =7 HE4+9 T+ 1),

From (37) and (42a.b), Q" can be expressed by
Q= Q%+ p,(VD=DV)+p(VDV' =V~ 'DV)+p_,(DV~'-V~'D). (43)
These two representations (42a.b) and (43) have not been obtained before.

As described by Gurtin and Spear (1983), the co-rotational derivative of U, that is, the
time derivative of U with respect to its principal triad fixed can be defined as

3
U*=U-Q'U+UQ"= ¥ AN, ®N,. (44)
il
Similarly, the co-rotational derivatives for an isotropic tensorial function f(U) is given by

S (U)* = /(U)-Q (U)+f(U)Q". (45)

These co-rotational derivatives defined in (44) and (45) are objective in the sense that
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the influences due to the rotation of the principal axis on U or on f(U) have been eliminated.
If we rewrite (44) in the form

3
U=lrO)I+ ¥ AN, @ N, +Q-U-UQ*, (46)
i= 1

where 4/ = A, — 1/3(4,+ A, + 4,). [t is seen that U can be additively decomposed into three
parts. the first two parts representing, respectively. the change rate of tr U and the deviatoric
change rate of U watched by an observor fixed on the principal triad. This decomposition
might be useful in constructing the constitutive relations for rate-dependent and hypoelastic
materials.

Finally, it should be mentioned that the above discussion can remain the same for the
symmetric left stretch tensor V given in current configuration. In fact, the spin of V is Q£,
therefore, its co-rotational derivative V* is defined as

V*=V_QV4VQE = VO_QLV 4+ VQE, (47)
we see from (47) that the co-rotational derivative of V is in general not the same as the

relative time derivative of it.

4. RATES OF GENERALIZED STRAINS

The material derivative of a genceralized strain tensor E defined in (29) can be directly
calculated by

1
E=Y Lg(A)N, @ N, +Q'E-EQ", (48)

=1

where g(4) = df/di and ¢(1) = |. Using (44) and the definition of g(U), the above formula
can be transferred into its absolute representation

E = Yg(U)U+ Ug(U)] - g (U)(Q"U - UQ") + (Q"U - UQ")g(U)] + Q"E - EQ*.
(49)

Therefore, it leads to

Py o o Y l" “ 3 3 1,
E7 = JU* 0+ 0U* Y+ SH@IUT-UTQY - JUT IRIU-URIUT ) (50)

for the rate of Seth strain. For # = 0, by carrying out a limit process on (50), or from (49),
it is casy to obtain

EY =D+ 4UQ'U '=U 'Q-U)+ Q" In U=In UQ". (51

It would be sometimes convenient to express the quantity [/2(UQ'U ™' —U~'Q"U) in
terms of D and U through the fundamental solution (22). To do this we find

I . . . .
H{UQ'U-'—U'Q'U)= 3 [doD+¢_ .U 'DU""+1g_(DU~'+U"'D)
+ igo(UDU '+ U~ 'DU) + iq,(UD + DU) +¢,UDU], (52)

where
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do= —(PUHI-TIIHI+9 U +11°), q_,=1EFGEH-1%),
q_, = (PFU=3T1HI-213)III, qo = IO M —T1I),
g =1 =2FI-311II, g. = 31HI-11°.

After a simple algebraic calculation we can also arrive at
37 .
(V) = ¥ 2N.@N, = D+iUQIU~'~U~'Q ). (53)
i=1 ™

Combining (52) with (53). the co-rotational derivative (In U)* is expressed by D and U,
which is useful in determining the conjugate stress of the generalized Hencky strain.
We insert eqn (53) into (48) and arrive at

E = g(U)U(In U)* + QLE—EQ* = {[g(U)U(In U)* + (In U)*Ug(U)] + QE — EQL,

(54)
which leads to the following expression
’ 3 9, l 2 2
E™ = {[U"(n U)*+(In U)*U™]+ _,—"(Q"U"’—U"'Q"). (55)
for the Scth strain E™. In particular, we obtain
EY = (InU)* +Q"E'” —E"Q", (56)

In what follows, we want to scck the expressions for the relative time derivative and
the co-rotational derivative of In V. To do this, we first make use of £(V) = Rf(U)RY, and
have

d7(v)
TRy

YU or + Q¥ (V) =S (V)Q. (57)

Combining (57) with equations (51) and (47), finally we arrive at
(InV)y =D+ 4{VV ' -V IQV)+ Q4 In V—In VL, (58)
(InV)* =D+ {(VQV ' -V 'Q'V) = D+ L(FQF ' —F TQ'FT), (59)

where ¢ = RQ R as defined in (37b). The result shown in (59) is the same in form as
obtained by Gurtin and Spear (1983), where they did not give an explicit representation for
Q, = O

5. WORK CONJUGATE AND CONJUGATE STRESSES

According to Hill (1978), the stress T conjugate to the generalized strain E can be
defined through

w = 11l tr (¢D) = tr (TE), (60)

where w represents the stress power worked on a volume element in reference configuration
and o the Cauchy stress. In fact, the symmetric tensor T in (60) can be determined uniquely
as the form of E is prescribed.

Before deriving the general relation between T and a. Consider, as an example, the
simple case E = E/"? = U—1I. From (60), we obtain
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(1.2 I T -1 co1pT
T = - (RT6RU-'+L 'RTeR). (61)

This result can be found in Hill (1978). Conversely ¢ can be expressed in T'" ¥, In fact,
from (39) and (60) it follows that

a R{IT Y +(F+1DUT! U+ U T PU = (T U+ UTH?)

= (T =111
~[(UT' U+ U'T'YPU)RT.  (62)

The general relations between T and o are not as simple as (61) and (62).

Because we already have an explicit representation of (In U)* and E. the representation
of the stress T conjugate to E can be derived without any difficulty, from (54) and (60). it
follows that

[l tr(e+ D) = [l tr (6 D) = tr [Tg(U)U(In U)* + (ET — TE)Q*]. (63)

where ET — ET is measurc-invariant (Hill, 1975, unpublished). Since (In U)* is measure-
invariant, the diagonal components of Tg(U) in Lagrangian triad and tr (Tg(U)). tr
(Tg(U)U) as well as tr (Tg(U)U?) arc measurc-invariant, too. Combining (42b), (54) and
(63). the expression for a by virtue of T can be obtained. For convenicnce we introduce the
following notation,

T, =Tg(UU, T,=TE-ET+}UT,U '-U 'T,U), (64)

then we arrive at

1
IHIIR"6R = Sym {'rd+ Y p,d,’}. (65a)
=

or

| ! ) .
6=lifRSym{T”+ Y p,a,’}R', (65b)
= -1

where p, can be found in (42b) and

where Sym { -} means the symmetric part of { - }. When the specific form of E is given in
terms of U, the above representation (65a) with (65b) can be simplified further. To show
this, let’s consider the case T = T'”, from (64)-(65) we have

T, =T®, T, =L{UTOU ' =U-"TU) = ((In YT =T (In U)),

then
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{
a=—:—IR{T‘°’+ Y pid,’}RT. (66)

i= -1

The representation of T with respect to @ or ¢ can be derived from (73) through lengthy
algebraic calculation.

To avoid this complexity. an alternative way can be taken for eqn (6) by applying the
general approach as described in detail by Wang and Duan (1989), based on which the
solution of (6) can be expressed by

1
Q=Y o/Qf, (67)
i=-1

where

Q) =EE-EE, Q) =EEE"'—E'EE, Q/,=EE"'-E"'E, (68)
with

i, 11 s |

ol = (1} =4 1,+911), w)= Z—’(?;ll,—-l;). wf = A—(n;—sl,m,).
f /

4,
By =41 L= 1 =181, 1L 1L+ 411} +27 1117,

where 1, 1, and TH, are the three invariants of E. We make use of eqns (53) and (54) to
express D in terms of E, E, U as well as Q" in the form

D = [¢(U)U]" (E-Q"E+EQ") - 4(UQ U "' -U"'Q V). (69)
Then eqn (60) can be rewritten as follows:

tr (T-E)=Ultr(a-D) =l tr (6-D)
= [l tr {o[(9(U)U)" "(E-Q*“E+EQ") - L(UQU-'-U"'Q*U)]}, (70)

where ¢ = R"oR and D = RTDR. Now utilizing (67), inserting it into (70) and through a
cumbersome algebraic calculation we finally find the solution of (70) as given by

T = I11Sym {a[g(U)U]"+ i w{E,’}, (71)

im =1
where
L, =LE"'-E"'Y, Ef=ELE '—-E"'TL'E, I{=EX/-YL/E (72)
with
L/ = —Ed[g(U)U]" ' +d[g(U)U] 'E+i[UsU-'-U""'4U]. 73)

As an important example of the applications of (74), let us calculate the stress T'®
conjugate to the logarithmic strain E'® = In U. Since f(4) =In 4, so if"(1) = g(A)A =1,
which means g(U)U = L. In this case, eqns (71)-(73) lead to the simpler form
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1
T = [ {é+ ) w.'"S,'"} (74
t= -1
with
I =E"(nU) ' (InU)~'E",
Ef = (InU)Z"(In V)~ = (In U)~'E" (In V).
P = (In U)" ~£"(In U) (75)
and
" = ¢InU—In Ué+(UdU ' —U"'éU). (76)

This result can be compared with Hoger (1987).

With the help of (74). we can easily find the stress T'® conjugate to the strain In 'V,
Before deriving this stress, it is worth pointing out that since (In V)" is not objective, an
objective time derivative, say (In V)", has to replace (In V)* in using the formula (60). that
is, we must have

HItr (aD) = tr (T™(n U)): tr (eD) = tr (T(In V) ). a7

Since (In U) = R"(In V)R, from (85) we immediately arrive at
To o b RTORT, TO LT < e (78)
I ) )

Therefore, the conjugate stress T of In V is just T/1H1, the mapping of the conjugate
stress T of In U in the current configuration by using the trunsformation R as defined in
(25), divided by 111, The same conclusion can be driwn for the relation between the stress
conjugate to f(U) and that for f(V).

Hoger (1987) discussed the conjugate stress of In'V oand concluded that the stress
generally does not exist. However she seems to ignore the fact that the generalized strain E
and its conjugate stress T are defined in the reference configuration. If use is made of the
work conjugate principle to define the conjugate stresses in the current configuration, an
objective time derivative of strain should be defined to replace the simple time derivative
of the strain. The above discussion concerning the conjugate stress for In 'V obviously
confirms our argument.

6. CONCLUDING REMARKS

Making use of a group of complete and irreducible generators of a linear tensorial
cquation, the solution of this equation is obtained by an expansion technique. In particular,
the tensorial equation for a spin Q" of the principal triad of a symmetric and non-degenerate
tensor U has been formulated and discussed in detail. Based on this novel technique, the
invariant representation of the spin in terms of U and U has been given in a closed form,
and it has a simpler form as the tensor U has multiple cigenvalues.

To show the applications of the proposed method, three specific problems which are
obviously very fundamental in the study of constitutive relations for finite deformations
have been successfully treated, including the stretch tensor and its spin. the invariant
representations of generalized strain rate. Above all, the general invariant representation
of the stress and the generalized strain, which, to the best of the authors’ knowledge. has
not been known before. As an important example of the applications, the logarithmic
strain and its conjugate stress given either in the reference configuration or in the current
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configuration have been discussed in some detail and their invariant representations have
been analytically formulated in a compact form.
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